It's time to close the gender gap in research and the digital transformation

Exploratory Mutual Learning Workshop on Gender and Digitalization Horizon 2020 GENDERACTION project Standing Working Group on Gender in Research and Innovation European Research Area and Innovation Committee

26 March 2021, videoconference

Cláudia Sarrico OECD

It's time to close the gender gap in research By Michela Bello and Cláudia Sarrico

https://oecd-innovation-blog.com/2020/06/17/gender-gap-research-oecd-survey-scientific-authors/

OECD International Survey of Scientific Authors Some findings on women researchers

- Women are under-represented in research careers.
- On average across OECD countries, women are only around 40 percent of all researchers.
- They are considerably less likely to be in leadership positions.
- Only 30 percent of corresponding authors are women.
- Women researchers may have less opportunity to both enter and advance in their fields.
- The magnitude of this gender gap varies significantly across fields of research.

Women researchers earn less Despite parity in the quality of their research

- Women authors earn on average 5 to 6 percent less than their male counterparts do, even after accounting for individual and job-related characteristics
 - The gender wage gap is particularly wide in engineering and computer sciences (nearly 27 percent), and in senior manager positions (15 percent)
 - Women are at a greater disadvantage in fields associated with more prestige and better pay
- However, the work of male authors is not more likely to be cited or be published in prestigious journals than that of female authors
- Women authors also tend to be less mobile than men are
 - Around 24 percent of male authors live in a country that is different from where they attained their highest degree, compared to only 18 percent of women

Estimated differences of research quality and earnings between female and male scientific authors

Source: Bello and Galindo-Rueda (2020), based on OECD ISSA2018. http://oe.cd/issa

Women appear to face greater challenges in attaining leadership roles

- 80% of female corresponding authors and 85% of male corresponding authors hold a doctorate degree.
- Yet nearly 15 percent of female corresponding authors are in a subordinate relationship to a senior researcher, compared to just 8 percent of male researchers.

Gender differences on the use of digital tools

- Women authors appear less likely to seize opportunities brought about by digitalization
 - they are less likely to use advanced digital tools or share data and code
- But they are more likely to engage in activities aimed at building and maintaining their digital identity, and to communicate information about their work online
 - women need to put more effort into having their work recognized
 - men typically get more credit for co-authored papers in tenure decisions
 - women are held to higher standards when seeking to have their papers published in top journals
- No significant differences in the use of digital productivity and collaborations tools
- Female authors appear more likely to report access to digital infrastructure as a challenge.
- No evidence of significant differences in attitude between women and men towards the impact of digitalization on science.

Bello, M. and F. Galindo-Rueda (2020), "Charting the digital transformation of science: Findings from the 2018 OECD International Survey of Scientific Authors (ISSA2)", OECD Science, Technology and Industry Working Papers, No. 2020/03, OECD Publishing, Paris, https://doi.org/10.1787/1b06c47c-en.

Gender parity is being achieved at the doctoral level Things diverge as women advance in the career

Countries need to make systemic changes in academic structures and institutions to address gender issues, and keep the momentum to track and evaluate the results of the range of actions and policies to achieve gender equality in science.

If countries fail to remedy gender discrepancies, they risk wasting considerable talent that could have otherwise made valuable contributions to their research systems, and knowledge production itself becomes inherently gender biased.

In the 1970s and 1980s, many orchestras began using blind auditions in an effort to mitigate any gender-related biases among judges.

The experiment marked a turning point for female musicians, as the percentage of women in orchestras increased dramatically.

Science today needs a similar turning point to eliminate systemic bias against women – and it may take similarly bold ideas to get there.

Gender in a changing context for STI

- Most countries are implementing policies to address gender equity
 - But policy initiatives remain fragmented
- There is a need for strategic and systemic long-term approach:
 - 1. Monitor and address long-term challenges in scientific education, training and careers
 - 2. Ensure that digital education and training strategies provide full and equal opportunities to girls and women and do not enforce traditional gender stereotypes or introduce digital discrimination
 - 3. Ensure that the contribution of all disciplines and supporting professions is fully recognised, valued and rewarded in the transition to open science and greater transdisciplinary research

OECD (2018), "Gender in a changing context for STI", in OECD Science, Technology and Innovation Outlook 2018: Adapting to Technological and Societal Disruption, OECD Publishing, Paris, <u>https://doi.org/10.1787/sti_in_outlook-2018-12-en</u>.

Building digital workforce capacity and skills for data-intensive science

- Capacity building efforts need to create a workforce that reflects the diversity of society
 - to ensure that science is not only more productive but also more responsive to societal needs.
- There is substantial evidence of gender inequality in the digital world
 - but **policy interventions can help** pave the way to greater inclusion of women.
- There is a **fundamental role for education and training** in bridging the digital gender divide.
 - Needs to be part of systemic approach
 - Promoting ICT use, skills and learning
 - Empowering educators and making them active agents of change.
- There are now a range of initiatives that encourage gender diversity in digital roles (and more broadly in science, technology, engineering and mathematics).
 - CIFAR: supports specific training programmes for schoolgirls and young women to raise awareness of AI

OECD (2020), "Building digital workforce capacity and skills for data-intensive science", OECD Science, Technology and Industry Policy Papers, No. 90, OECD Publishing, Paris, <u>https://doi.org/10.1787/e08aa3bb-en</u>.

TIMES OF CRISIS AND OPPORTUNITY

OECD

Chapter 3:Challenges and new demands on the academic research workforce

FUTURE NEEDS OF #SCIENCE AND OF #SOCIETY

The Precarity of Research Careers

Should I stay or should I go? Deteriorating working conditions for academic researchers may push the best talent to go elsewhere. Academic structures that mainly link training and careers to 'research excellence' - as measured by publication outputs - are not fully adequate to meet the future needs of science and of society as a whole. This poses several important questions for STI policy.

Website online: <u>http://www.oecd.org/sti/science-</u> technology-innovation-outlook/

OECD publishing

BUILDING DIGITAL WORKFORCE CAPACITY AND SKILLS FOR DATA-INTENSIVE SCIENCE

OECD SCIENCE, TECHNOLOGY AND INNOVATION POLICY PAPERS July 2020 No. 90

STI policy papers www.oecd-ilibrary.org

Thank you!

claudia.sarrico@oecd.org